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Abstract. The method of the double-time–temperature Green function is used to study
theoretically the magnetic properties of layered Heisenberg ferrimagnets. The sublattice
magnetization is calculated for different interlayer coupling strengths in the whole range of
temperatures. According to the extent to which the interlayer coupling suppresses the two-
dimensional spin fluctuations, we divide the low-temperature regime into two parts and give the
asymptotic expressions for sublattice magnetization in two low-temperature regimes and in the
vicinity of the Curie temperature, respectively. We also discuss the dependence of the Curie
temperature on the interlayer coupling strength.

1. Introduction

Layered magnetic systems have been a subject of growing interest in recent years. The
discovery of copper oxide high-Tc superconductors with quasi-two-dimensional (quasi-2D)
magnetic properties in their parent materials greatly stimulates further studies in this field.
Theoretically, many investigations on layered magnetic systems have been focused on the
layered ferromagnets and antiferromagnets. It is well established that a pure 2D Heisenberg
system does not achieve long-range ordering (LRO) at a finite temperature [1], whereas a
quasi-2D system can achieve LRO at a non-zero temperature with the interlayer coupling
suppressing 2D spin fluctuations [2–16]. At low temperatures, when the interlayer coupling
is weak, the properties of a system undergo dimensional crossover with an increase in
temperature from zero. For example, in layered ferromagnets the magnetization changes
from a T 3/2 to a T ln T behaviour [10, 11], and in layered antiferromagnets the sublattice
magnetization changes from aT 2 to a T ln T behaviour [3, 12–14]

Practical ferrimagnets generally possess rather complicated lattice structures and hence
are difficult to handle. In order to retain the basic feature of ferrimagnets, theoretically
a two-sublattice model is often used [17–22]. For homogeneous ferrimagnets, Nakamura
and Bloch [17] investigated the temperature dependence of magnon frequencies using the
Holstein–Primakoff transformation. Lin and Zhang [19] investigated the spin-wave spectrum
and sublattice magnetization of Heisenberg ferrimagnets atT = 0 K using the method of
the retarded Green function equation of motion. Xueet al [21] investigated the spin-wave
spectrum and sublattice magnetization of anisotropic ferrimagnets using the same method
as in [19].

In this paper, we shall study the magnetization behaviour of layered Heisenberg
ferrimagnets in the whole range of temperatures; it is a natural expansion of the previous
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work on its low-temperature behaviour [22]. The paper is arranged as follows: in section 2,
we start with a layered ferrimagnet Heisenberg model and then give the fundamental
equations. In section 3, we give the numerical results of sublattice magnetization in the
whole range of temperatures, the asymptotic expressions of the sublattice magnetization in
different temperature regimes, the calculation formula of the Curie temperature, and so on.
The last section 4 is devoted to the summary.

2. Fundamental equations

We consider a layered Heisenberg ferrimagnetic model on a simple-cubic lattice with
intralayer lattice parametera and interlayer lattice parametersa and c. Suppose that the
lattice is divided into two sublattices A and B,i ∈ A and j ∈ B, and the spin values areSa

in sublattice A andSb in B; there areN sites on each sublattice [22]. The Hamiltonian is

H =
∑
〈i,j〉

JijSj · Sj (1)

where the summation is taken over all nearest-neighbour sites〈i, j〉. For convenience, we
defineJij as

Jij =
{

J if sites i andj are in the same layer

J⊥ if sites i andj are in two nearest-neighbour layers.
(2)

To analyse the layered Heisenberg ferrimagnets, we introduce the following Green functions
according to Callen [23]:

GA(E, i1, i2) = 〈〈S+
i1
| exp(pSz

i2
)S−

i2
〉〉E (3a)

FA(E, j2, i2) = 〈〈S−
j2

| exp(pSz
i2
)S−

i2
〉〉E (3b)

GB(E, j1, j2) = 〈〈S+
j1

| exp(qSz
j2
)S−

j2
〉〉E (4a)

FB(E, i2, j2) = 〈〈S−
i2
| exp(qSz

j2
)S−

j2
〉〉E (4b)

wherep andq are parameters. For convenience, we introduce the transformationSz
j → −Sz

j ,
S+
j → S−

j andS−
j → S+

j , as did Cheng and Pu [24]. Using the technique of the equation of
motion for the Green functions, within the Tyabilkov decoupling approximation, we obtain
the Fourier components of the Green functions:

GA(E, k) = FA(p)

E+
A − E−

A

(
E+

A + 4J (2 + δ)〈Sz〉A
E − E+

A

− E−
A + 4J (2 + δ)〈Sz〉A

E − E−
A

)
(5)

GB(E, k) = FB(q)

E+
B − E−

B

(
E+

B + 4J (2 + δ)〈Sz〉B
E − E+

B

− E−
B + 4J (2 + δ)〈Sz〉B

E − E−
B

)
(6)

where

FA(p) = 〈[S+
i , exp(pSz

i )S
−
i ]〉 (7a)

FB(q) = 〈[S+
j , exp(qSz

j )S−
j ]〉 (7b)

E±
A = 2J (2 + δ)〈Sz〉A{(α − 1) ± [(1 − α)2 + 4α(1 − η2

k)]
1/2} (8a)

E±
B = 2J (2 + δ)〈Sz〉B{(1 − α) ± [(1 − α)2 + 4α(1 − η2

k)]
1/2} (8b)
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ηk = cos(kxa) + cos(kya) + δ cos(kzc)

2 + δ
(9)

δ = J⊥/J (10)

α = 〈Sz〉B/〈Sz〉A. (11)

Here〈Sz〉A and〈Sz〉B are sublattice magnetizations per site (the unit is taken to begµB) in
sublattices A and B, respectively. BecauseSa 6= Sb in ferrimagnets, letSa > Sb without loss
generality. From equation (8) we can see thatE+

A = −E−
B andE+

B = −E−
A , the spin-wave

spectrum has two branches. Whenk → 0, E+
A = −E−

B → 0, which represents the acoustic
branch, whileE+

B = −E−
A remains finite and represents the optical branch [17]. When

Sa = Sb, the system is an antiferromagnet, and the spin-wave spectrum takes a very simple
form which is identical with that of [12].

After using the spectral theorem and Callen’s [23] technique, we finally obtain the
magnetization of each sublattice as

〈Sz〉A = (Sa − nA)(1 + nA)2Sa+1 + (Sa + 1 + nA)n
2Sa+1
A

(1 + nA)2Sa+1 − n
2Sa+1
A

(12a)

〈Sz〉B = (Sb − nB)(1 + nB)2Sb+1 + (Sb + 1 + nB)n
2Sb+1
B

(1 + nB)2Sb+1 − n
2Sb+1
B

(12b)

wherenA andnB are the auxiliary functions:

nA = 1

N

∑
k

1

E+
A − E−

A

(
E+

A + 4J (2 + δ)〈Sz〉A
exp(βE+

A ) − 1
− E−

A + 4J (2 + δ)〈Sz〉A
exp(βE−

A ) − 1

)
(13a)

nB = 1

N

∑
k

1

E+
B − E−

B

(
E+

B + 4J (2 + δ)〈Sz〉B
exp(E+

B ) − 1
− E−

B + 4J (2 + δ)〈Sz〉B
exp(βE−

B ) − 1

)
. (13b)

Equations (8)–(13) are the fundamental equations of the sublattice magnetizations; they
are very complicated and must be solved self-consistently.

3. Results and discussion

First of all, we carry out numerical calculation to solve self-consistently the fundamental
equations (8)–(13) about〈Sz〉A and〈Sz〉B for different sets of parametersSa, Sb andδ and
hence obtain the temperature dependence of the spin-wave spectra. The results of sublattice
magnetizations versus reduced temperature2 = kBT /6J are plotted in figures 1–4, which
correspond toδ = 1, 0.1, 0.001 and 0.000 01, respectively. In these figures, the solid curves
represent the magnetizations〈Sz〉A of sublattice A, and the broken curves represent〈Sz〉B ,
the minus values of the magnetizations of sublattice B. Four groups of curves a, b, c and d
correspond toSa = 1, 3

2, 2 and 5
2, respectively. From these figures we see that, for fixedδ

and2, both〈Sz〉A and〈Sz〉B increase whenSa increases; for fixedSa andδ, both〈Sz〉A and
〈Sz〉B decrease when2 increases, but〈Sz〉A drops more rapidly than does〈Sz〉B . We can
see also that the transition temperature, the Curie temperature, increases with increasingδ

for fixed Sa andSb.
We now discuss the behaviour of the sublattice magnetizations in different temperature

regimes.
At T = 0 K, the factor [exp(βE) − 1]−1 is zero forE > 0 and is−1 for E < 0. The

auxiliary functions are then from equation (13)

nA0 = 1

N

∑
k

E−
A + 4J (2 + δ)〈Sz〉A

E+
A − E−

A

(14a)
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Figure 1. The 〈Sz〉A (——), the magnetizations of sublattice A and the〈Sz〉B (– – –), the
minus magnetizations of sublattice B, as functions of reduced temperature2 with Sb = 1

2 and
δ = 1.0. The values ofSa corresponding to four groups of curves a, b, c and d are 1,3

2 , 2 and
5
2, respectively.

Figure 2. The sublattice magnetizations〈Sz〉A and〈Sz〉B versus2; the parameters are the same
as in figure 1, butδ = 0.1.

nB0 = 1

N

∑
k

E−
B + 4J (2 + δ)〈Sz〉B

E+
B − E−

B

(14b)

noting that [E−
A + 4J (2 + δ)〈Sz〉A] = [E−

B + 4J (2 + δ)〈Sz〉B ] and E+
A − E−

A = E+
B − E−

B ;
thus nA0 = nB0, which is different fromnA0 + nB0 = −1 in [19]; this results from the
transformation of spin operators in sublatticeB.

Substituting (14) into (12), we obtain the sublattice magnetizations atT = 0 K as
follows:

〈Sz〉A0 = (Sa − nA0)(1 + nA0)
2Sa+1 + (Sa + 1 + nA0)n

2Sa+1
A0

(1 + nA0)2Sa+1 − n
2Sa+1
A0

(15a)

〈Sz〉B0 = (Sb − nB0)(1 + nB0)
2Sb+1 + (Sb + 1 + nB0)n

2Sb+1
B0

(1 + nB0)2Sb+1 − n
2Sb+1
B0

. (15b)
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Figure 3. The sublattice magnetizations〈Sz〉A and〈Sz〉B versus2; the parameters are the same
as in figure 1, butδ = 0.001.

Figure 4. The sublattice magnetizations〈Sz〉A and〈Sz〉B versus2; the parameters are the same
as in figure 1, butδ = 0.000 01.

Using equations (8)–(11), we can also solve the coupled equations (14) and (15) for different
sets of parametersSa andSb to get the relation between sublattice magnetizations and the
interlayer coupling strength at zero temperature; the results are shown in figure 5 and
figure 6. We can see that the sublattice magnetizations at zero temperature are smaller than
their classical values owing to the zero-point quantum fluctuations of spin. The sublattice
magnetizations increase with increasingδ for fixed Sa, and with increasingSa for fixed δ.
At T = 0 K, the magnetic property of ferrimagnets is similar to that of antiferromagnets.

In the low-temperature regime, when investigating the asymptotic forms of the sublattice
magnetizations, we can neglect the contribution from the optical branch of the spectra. As
in [3, 10, 12, 22], introduce21 = (2 + δ)/3 to define the low-temperature regime21 � 2;
thus, when the interlayer coupling is weak(δ � 1), the low-temperature regime can be
divided into two parts,21 > δ � 2, corresponding to the 3D case, and21 � 2 � δ,
corresponding to the quasi-2D case. When the interlayer coupling is not very weak, only
the first part,21 > δ � 2, is retained.
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Figure 5. 〈Sz〉A0, the magnetizations of sublatticeA, versusδ with Sb = 1
2 at T = 0 K for

several values ofSa .

Figure 6. 〈Sz〉B0, the minus magnetizations of sublatticeB, versusδ.

In the first low-temperature regime21 > δ � 2, the auxiliary functionsnA andnB are
calculated using the long-wavelength approximation in all directions ofk. From (13) we
have

nA = nA0 + ζ( 3
2)

(1 − α)
√

δ

(
3(1 − α)2

8π〈Sz〉B

)3/2

(16a)

nB = nB0 + αζ( 3
2)

(1 − α)
√

δ

(
3(1 − α)2

8π〈Sz〉B

)3/2

. (16b)

In the second low-temperature regime21 � 2 � δ, using the long-wavelength
approximation only in directions ofkx andky and integrating directly, we have

nA = nA0 + 32

8π〈Sz〉B ln

(
3(1 − α)2

2〈Sz〉Bδ

)
(17a)

nB = nB0 + 32

8π〈Sz〉A ln

(
3(1 − α)2

2〈Sz〉Bδ

)
, (17b)
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wherenA0 andnB0 have been given by (14).
It is easy to see that the second term of the right-hand side in equations (16) and (17)

is small. Expanding equation (12) atnA = nA0 and nB = nB0 and then using (16) and
(17), we can obtain iterative solutions of the sublattice magnetizations in the corresponding
low-temperature regime.

In the first low-temperature regime21 > δ � 2, we find that

〈Sz〉A = 〈Sz〉A0 − ASaζ( 3
2)

(Sa − Sb)
√

δ

(
3(Sa − Sb)2

8πSaSb

)3/2

(18a)

〈Sz〉B = 〈Sz〉B0 − BSbζ( 3
2)

(Sa − Sb)
√

δ

(
3(Sa − Sb)2

8πSaSb

)3/2

. (18b)

In the second low-temperature regime21 � 2 � δ, we have

〈Sz〉A = 〈Sz〉A0 − 3A2

8πSb

ln

(
3(Sa − Sb)2

2SaSbδ

)
(19a)

〈Sz〉B = 〈Sz〉B0 − 3B2

8πSa

ln

(
3(Sa − Sb)2

2SaSbδ

)
(19b)

where〈Sz〉A0 and〈Sz〉B0 are the sublattice magnetizations atT = 0 K, and

A = 1 − (2Sa + 1)2n
2Sa

0

(1 + n0)2Sa+1 − n
2Sa+1
0

(
1 − n0[(1 + n0)

2Sa − n
2Sa

0 ]

(1 + n0)2Sa+1 − n
2Sa+1
0

)
(20a)

B = 1 − (2Sb + 1)2n
2Sb

0

(1 + n0)2Sb+1 − n
2Sb+1
0

(
1 − n0[(1 + n0)

2Sb − n
2Sb

0 ]

(1 + n0)2Sb+1 − n
2Sb+1
0

)
(20b)

n0 = −1

2
+ 1

2N

∑
k

Sa + Sb√
(Sa − Sb)2 + 4SaSb(1 − η2

k)

. (21)

From equations (18), we can see that, in the first low-temperature regime, the reduction
in sublattice magnetizations follows the BlochT 3/2 law of 3D ferromagnets [15] while,
in the second temperature regime, it follows theT ln T law the same as in both quasi-
2D ferromagnets and quasi-2D antiferromagnets [3, 10]. For weak interlayer coupling,
with increase in temperature from zero, the temperature dependences of the sublattice
magnetizations have a crossover from 3D to quasi-2D behaviour. At low temperatures,
the reduction in magnetization due to the spin thermal excitation in sublattice B is smaller
always than that of sublattice A. We can also see that the low-temperature behaviour of the
sublattice magnetization obtained by the present method is very similar to that obtained by
linear spin-wave theory [22], which indicates that the present method is suitable for use in
dealing with layered ferrimagnets.

Finally, we discuss the behaviour of the sublattice magnetizations just below the Curie
temperature2c. Because〈Sz〉A → 0 and〈Sz〉B → 0 as2 → 2c; so we can expand the
exponential of equation (13) in powers ofE±

A andE±
B , giving

nA = F12

221〈Sz〉B − 1

2
+ 21〈Sz〉B

62
(22a)

nB = F12

221〈Sz〉A − 1

2
+ 21〈Sz〉A

62
(22b)

where

F1 = 1

N

∑
k

1

1 − η2
k

. (23)
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Equation (22) shows that bothnA andnB are large quantities. Expanding the right-hand
side of equation (12) in powers ofnA − 1 andnB − 1, we have

(nA + 1
2)〈Sz〉A = 1

3Sa(Sa + 1) − 3CA〈Sz〉2
A

2Sa(Sa + 1)
(24a)

(nB + 1
2)〈Sz〉B = 1

3Sb(Sb + 1) − 3CB〈Sz〉2
B

2Sb(Sb + 1)
(24b)

where

CA = (4S2
a + 4Sa − 3)/30 (25a)

CB = (4S2
b + 4Sb − 3)/30. (25b)

Substituting (22) into (24), we obtain

〈Sz〉2
A = αSa(Sa + 1)/3 − F12/221

3CA/[2αSa(Sa + 1)] + 21/62
(26a)

〈Sz〉2
B = αSb(Sb + 1)/3 − F12/221

3αCB/[2Sb(Sb + 1)] + 21/62
. (26b)

Considering〈Sz〉A = 〈Sz〉B = 0 at2 = 2c, the numerator of equation (26) is equal to zero;
we can find the limiting value ofαc and the Curie temperature2c as follows:

αc = [Sa(Sa + 1)/Sb(Sb + 1)]1/2 (27)

2c = 221[Sa(Sa + 1)Sb(Sb + 1)]1/2

3F1
. (28)

Substituting (27) and (28) into (26), we obtain

〈Sz〉A = 2Sa(Sa + 1)

[3(F1 + 6CA)]1/2

(
1 − 2

2c

)1/2

(29a)

〈Sz〉B = 2Sb(Sb + 1)

[3(F1 + 6CB)]1/2

(
1 − 2

2c

)1/2

. (29b)

We see that, when the temperature approaches the Curie temperature, the asymptotic
behaviour of the sublattice magnetization of the layered Heisenberg ferrimagnets is similar
to that of Heisenberg ferromagnets and antiferromagnets; the critical exponent of sublattice
magnetization is also12. We have calculated numerically the Curie temperature as a function
of interlayer coupling strength using equation (28) and the results are plotted in figure 7; we
see that the Curie temperature increases with increasingSa for fixed δ and also increases
with increasingδ for fixed Sa. As in [16], the weak-coupling limit, we can obtain

2c = 4π [Sa(Sa + 1)Sb(Sb + 1)]1/2

ln(32/δ)
. (30)

Equation (30) shows clearly that, whenδ = 0, 2c = 0, i.e. the pure 2D ferrimagnets do
not have LRO at finite temperature as in pure 2D ferromagnets and antiferromagnets. The
interlayer coupling also plays an important role in the stabilization of 3D LRO at a finite
temperature for ferrimagnets.

4. Summary

We have investigated a layered ferrimagnetic Heisenberg model by means of a double-
time–temperature spin Green function. In the whole temperature regime the sublattice
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Figure 7. The reduced Curie temperature2c(kBTc/6J ) versusδ.

magnetizations are computed self-consistently for different spin quantum numbersSa

and interlayer coupling strengthsδ(= J⊥/J ). The results show that the sublattice
magnetizations decrease with increasing temperatureT , with decreasingSa and with
decreasingδ. At T = 0 K, as in antiferromagnets, the zero-point quantum fluctuations
of spin also exist in ferrimagnets. At low temperatures, for weak interlayer coupling,
the asymptotic forms of sublattice magnetizations show that the temperature dependences
of sublattice magnetizations undergo a crossover from 3D(T 3/2) behaviour to quasi-2D
(T ln T ) behaviour asT increases from zero. When the temperatureT approaches the Curie
temperature, the asymptotic behaviours of sublattice magnetizations show that their critical
exponents are all12. We finally give the calculation formula of the Curie temperature and its
numerical results, as well as its asymptotic expression for weak interlayer coupling strength,
which also show that the 2D ferrimagnets do not have LRO at non-zero temperature.
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